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ABSTRACT

In 1951 D. C. Drucker presented a classic example of a sim-
ple three-bar system in which a single monotonically-increasing
external load produced an actual plastic stress reversal with
one bar yielding first in tension and then in compression. This
example is reviewed and built upon. Other simple examples
illustrate general loading, unloading, and reloading of elastic/
plastic structures, shakedown, and lack of uniqueness in contained

plastic deformation.
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1. INTRODUCTION

There are many complications in applications of plasticity
theory, particularly in comparison with the linear theory of
elasticity. If these complications are encountered for the first
time in a "real" problem with large amounts of analysis and com-
putation even for an elastic material, the peculiar features of
plastic behavior may be masked, and the probability of undetected
errors is greatly increased. Por this reason, there is an obvious
advantage to discussing plasticity first in terms of simple
structures, the simpler the better. Of course, if a problem 1s
too simple, then some essential features of plasticity may not
appear. However, one of the surprising features of plasticity
theory is that so many of its important features can be illustrated
with problems which are easily comprehended by students in a
beginning class in statics.

In the present paper we shall illustrate several ot the
faatures of plasticity theory with two very simple three-bar
statistically indeterminate trusses, as shown in Figs. ! and 8.
Specifically, in Sec. 2 we will use the truss of Pig. 1 to show
the difference between hardening and perfectly-plastic materials,
anc the effect of including or neglecting elastic strain components.
Section 3 extends these results to unloading and reloading. We then
examine some undesirable effects which may occur when loads are
applied repeatedly. The next two sections illustrate types of
behavior which are drastically different from those encountered in
elasticity. In Sec. 5 we look at the truss in Fig. 8 and show that

under a monotonically increasing single load a bar may yield first




in tension and then in compression. Thus proportional “loading”
does not by any means guarantee proportional "streasing®. Section
6 returns to the truss in Fig. 1 and shows that a boundary-value
problem that is "well-posed®™ in the theory of elasticity may have
a non-unique solution in plaaticity. The final section of the
paper will quote analytic and numerical solutions to more complex

problems where the same types of responses are observed.

2. LOADING OF DIFPERENT PLASTICITY MODELS
The defining equations for any problem in continuum or struc-
tural mechanics come from three sources: statics, kinematics,
and constitutive. For the truss in Fig. 1, the two statics
equations are obtained from horizontal and vertical equilibrium of

point D:
(B, - F)/VT =1 (F) ¢+ PN/ /T e P, =V [$¥]

where P, is the tensile force in bar i. The kinematics expresses

i
the elongation LAY of each bar in terms of the displacements u and

v of point D:

e = (u ¢ /7 @ -v ey = (-u+ v)//% (2)
Obviously, we are using a strictly linesar theory in writing Eqs.
(1) and (2).

In the present section we are considering only the case where
stress and strain are both increasing functions of time, 80 that

we can quite generslly write
o = fie) [}

Therefore, for each bar of the truss we may write

Fy= M e /L, (0
where A1 is the cross-sectional area and L‘ is the length of bar {.
Although f(t) could represent an experimentally-obtained stress-
strain curve, we will consider here the four piecewise-linear
curves model shown in Fig. 2. Pigure 2a portrays an “elsstic/strain-

hardening” material (E/SH) whose equations may be written

L) o < a = Eg¢
< cy

<a ‘e + {1 - E'/E)O S
°y o= BE'c { /E) v (&3]
where E is the elastic modulus, ®' is the plastic modulus, and °y
is the yield stress. We define the yield force, elastic sti€fness,

and plastic stiffneas of bar { by

‘l‘ - Ai"yl k‘ - A‘l‘/L‘ k" - Ai“'/.‘l {6)

respectively, to obtain the constitutive equation for bar i:

E/ 0<r <Yy LA N (12)
E/SH Yl < '1 F‘ - kl.'l + \"(l - k"/k‘) (1)
Similarly, the constitutive equation for the "elastic/perfectly-
plastic" material (B/PP) in Pig. 2b coneists of Eq. (7a) for

0 ¢ P‘ < Y’. and

B/PP ., > Y‘/l‘ LIS 2 {1c)
For the "rigid/strain-hardening® (R/SH) and “rigid-perfectly-plastic®

(R/PP) materials in Figs. 2c and 2d, respectively, the equations are

R/ 'l < Y‘ e, = 0 (1d)
R/SH r1 > Y‘ r‘ - k1'o‘ + Y‘ (Te}
R/PP e > [} Pi - Y‘ (7f)

'
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Let the three bars of the truas in Pig. 1 &all have the same
modult E and E*, the same area A, and the same yield stress uy;
the j.eld force in each bar will then have the same value Y. We

define X = AE/L. Then the bar stiffnesses are

k -l,-l/ﬂ ky, = k {8)

1
We conside- a deformation-controlled loading program in which
u =0 and v is slowly increased It then follows from Egs. (2)
that
e =y - 7% o=V 9
Regardless of which of Egs. (7) apply, we see that - P,, whence
Bqs. (1} can be written
H=0 vVelirg s r, (10)
We first examine the K/5H material. Por v sufficiently small
ai. bara will be elastic so that {7a) applies. Thus
Stage 1, all elastic P, =F; = kv/2 '2 - kv {1la,b)
v = kv{l + 1//7) {llc)
This stage will reach its limit when bar 2 yields at kv = Y. At
this point we have
Stage 1L kv/Y = 1 P =Fy=Y/2 LY | (12)
v (l+ /MDY
In the next stage bar 2 is plastic and is governed by Eq. (7b)
but (7a) still applies to bars 1 and 3. Thus Eqs. (11) are xopl,cad

by

R R e e R

Stage 2, bar 2 plastic 'l - rJ - kv/2

P, = k'v ¢ Y{l - k'/k) an

2
Voo kvi(1//T ¢+ KO/K) 4+ Y(L - k/K)

When kv = 2Y bars 1 and ) reach yield with the result

Stage 2L kv/Y = 2 "I T P, = Y(1 + k*/K)
L 2 ae
Vve=Y(/T+ 1+ k')

As v is still further increased, all hars will be plastic and the

solution from now on will be

Stage 3, all plastic rl = r, = k'v/2 + Y{} - k', k}

P, s kv ¢ il - k'/k) {13}
Ve k'v(l//T ¢ 1) 4 (/T e 1YL - k'K
The solid curve in Fig. 3 shows the resulting load-deflection curve
defined by Eqs. (11-15).
ror the E/PP mode. of Pig. lb, the analysis is even simpler.
Stage 1 and Stage 1L are, of course, still given by £qs. (il} and
{12}, respectively. In Stage 2 bar 2 has the constant value of ¥

and bars 1 and 3 are elastic. Thus (ila} and (1) lead tmmediately to

Stage 2, bar 2 plastic P, =, = kv/2 P, o=V
1 3 £ (16}

Ve kv//T+ Y

gquations (16) may also be obtained from qs. {(13) by settii
k' = 0.
Btage 2L again occurs when bars 1 and 3 reach yield with the

result

Stage 2L, all plastic 'l - " - rz -y va (/T ¢ 1Y {17a)
kv/Y = 2 17
o~ - et b I 2R




At this point the perfectly-plastic truss cannot tolerate any
further increase in load, but can continue to deform indefinitely

with no further losd increase. Thus the solution for Stage 3

conaists of Eqs. (17a) with any value of v greater than 2v/k.
The dashed curve in Fig. 3} shows the ioad-deformation curve for an
E/PP material as defined by Zgs. (11, 12, 16, 17).

If the truss is made of a R/SH material, it will not be able
to deform at all until all three bars have reached yield. Thus
Stagea 1 and 2 of the previous modele are condensed into a single
Stage | with @ - The bar forces are non-unique until Stage IL
is reached shen they are given by Eqe. (17a) with v = 0, FPor any

positive v, then, all three bars are plastic, and the solution is

Stage 2, all plastic '1 - " =Y 4 k'v/2 !2 =Y 4+ k'y
Ve V(T 4 1) 4 (VT 0 )Y

(18)

The dot-dashed curve in Fig. ) shows the resulting losd-deflection
curve,

Finally, the R/PP model predicts zero displacesent unti}l
Stage IL a8 given by Bqs. (17a) with v = 0. Por Stage 2 the static
quantitie® are still given by (17a) with any positive v. The load-
deflection curve is shown dotted in Pig. 3.

Pigure 3 is drawn with dimensionless scales with an assumed
ratio k/X' = 0.1, Let us define the *yield-point load® of the
truss as that value V = Vo for which the truss becomes very wuch
more flexible. Por the E/SH wodel it is g{ven by the last Eq. (14),
and for the other three models it has the precise value Y(v/7 + 1).
Therefore, if only Vo is required, even the simplest R/PP model
gives a very good spproximation to it.

v

|

Por values of the load less tna* the yield-point load, the
effect of strain hardening is very saall, and it appears quite
reasonable to use the E/PP model as an approximation of the more
accurate E/SH one. On the other hand, if the applied load is to
be much larger than Vgr then the effect of elastic strains becomes
increasingly less important, and the R/SH model gives a gnod

approximation.

3. UNLOADING AND RELOADING
REquations (5) are no longer adequate to describe the con-
stitutive behavior if the stress in a bar is allowed to both

incre: and decrease. Instead, we must formulate them in terms

of rates or increments. To this end, at iny given instant we
characterize the behavior of a bar asg either elastic (E), strain-
hardening (SH), or perfectly-plastic (PP}). Then the rate equations

corresponding to (5) may be written

| {] am e (19a)
8Hr o0 = B'¢ (19b)
PP G =0 (19¢) *

Equations (19) do not form a complete description of material
behavior, because we still require rules to tell which set of
equations are spplicable at any given time. For the PP material
this description is quite simple. The magnitude of the streas can
naver exceed the initial yield stress ay' If o = oy and ¢ is
increasing or if ¢ = o, and ¢ i decreasing, then the bar is

plastic; otherwise it is elastic.




Por the SH material, the yield stress doeas not remain constant.
Rather, at any time there exist two numbers o' and ¢° which repre-
sent the current yield streasea. If these are known, we can write

the syllogisa

IF {a = o' AND € > 0) OR {c = 0 AND £ < 0)

(19d)
THEN (PLASTIC) ELSE (BLASTIC)
Equation (19d) is supplemented with requirement
@ <a <o {19e)
Bquations (19d,e) apply to a PP material if we assign the
constant values
PP ‘=g "= .0
[ Y o v (19¢£)

For the SH material it in still necessary to formulate a rule
for the variation of the current yield stresses. We begin by
stating chat whenever a bar is elastic its yield stresses do not
change. Next, we require that during pilastic behavior the "active”

yield stress remains equal to the bar stress:

SH1 IF (PLASTIC TENSION) THEN o' « o
(199)
1P (PLASTIC COMPRESSION) THEM 0" = o

Vat ious models have been suggested for describing the change
in the “passive” yield stress, i.e., the change in 0" when o0 = o',
We consider here two comson models known as “igotropic® (IR) and
“kinematic” (K#) hardening. For an IH material the two yleld

atre are always equal in magnitude and opposite in sign,

whereas for a KH material the “elastic range” between the two yield

stresses maintains a constant value:

|

IH: o' ¢+ 0" >0 (19h)

EKHi o' - ¢ ~ qu 1194)
Pigure 4 shows typical load-unload-reload curves for the three
different materials.

We consider again the truss in Pig. 1 with all three bars

having equal areas, soduli, ond yield forcea. As a loadinyg program
we hold u » 0, always. The vertical di.placement v is first
increased to 8Y/k, then decreased to -£¥/k, and finally increased
to 0. As in the previous section all branches of the constitutive
equations lead to 'l -~ r3 and H = 0. Therefore, combining the
rate form of the kinematic equatiuns with Eqs, (19a-c).we obtain

the constitutive squations in the form

LTI S 2 LA Y (20a)
T N R% Py = xv (20b)
PP: B, =0 B, ~ 0 (20c)

For the remainder of Eqs. (19) one serely needs to replace g, ¢,
and oy by, respectively, ooy, and Y.
8ince we are analysing & displacement-controlled program, it 1is
ROt necessary to write the equilibrium equations in rate form.
Rather, we carry o-;t the incremental analysis for forces and
displacements. combine to obtain resultant values of the forces,
and then find the required external force V from the second Eq. (10).
The solution through Stage 3 is the same as in Sec. 2, and

Stage 3L is obtained by setting kv/Y = 8 in Stage ):

Stage 3L kv/Y =8 r‘/v 1 % 3r rz/v = 1 ¢ {21)
VY = (YT ¢+1) + (3T + 1) {22)
D o S - ot e . ST N T +

L
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where we have defined
r=k'/k (23)

In stage ¢ we decrease V which will cause all bars to revert
elastic behavior until bar 2 yields in compression. For KH the
total change {n rz during stage 4 will be Arz = -2¥. Therefore,
using (20a) for all three bars we may write the total change in

solution during stage 4 as

AFZ/Y = Avk/Y = -2 APl/Y = .1 (24)
Adding these increments to the values at Stage 3L, we obtain
Stage 4L(KH): Xv/Y = § rl/v = 3r !2/Y - -1 ¢+ Ir (25)

In Stage S bar 2 is plastic so we use (20a) for bar ]} and
{20b) for bar 2. This stage will end vhen bar 1 becomes plastic,

80 the total increments are

API/Y = -1 avk/Y = -2 AP,/Y - -2r (26)
Addition of Eqs. (25) and (26) then gives
Stage SL(KH): kv/Y = 4 P‘/y = -1 ¢ 3¢ PZIY « -1 ¢ Sr {27)

For the rest of the unloading both bars are plastic and take
Eq. 120b). This stage ends when we again reverse v and start to
reload. During reloading we enter stages 7, 8, and 9 corresponding
to all bars elastic, bar 2 plastic. and all bars plastic respsctively.

The various solutions are

Stage 6L{KK): Xxv/Y = -§ Pl/Y = -1 - 2r rz/v = -] «- Sr {28a)
Stage 7T I(KM): Xv/Y = -4 Pl/Y - =2r /Y = 1 - 5S¢ (28b)
Stage BL{KH): Kkv/Y = -2 PI/Y -1 -2r P2/Y =1 - 3r {(28¢)

11

Stage 9L(KH): kv/Y = 0 PI/Y «} -r l-‘2/¥ =1-x (28d)
The load in each stage is given by the second Bq. (10).

For an IH material the solution will be the same up through
Stage 3L, and the truss will have the same rates in Stage 4.
However, we must now keep track of the current yield force Y' for
each bar. During Stage 2 Yz' will increase and remain equal to Fz,
and during Stage 3 both yield forces will increase with the bar

forces. Thus at Stage JL the yield forces will be

Stage JL(IH): Yl' =1 + 3r Yz' w1l 4+ 7Tr {29)

and tiese values will continue to hold in Stage 4. Stage 4L will

occur when 'l - -Yl", hence
Stage 4L(IH): PIIY -4r F:/Y = <(1 ¢+ 1) Xv/Y = 6 - l4r (30}

puring Stage 5 Yz' will increase with the magnitude of rz, but Yl‘
will st{ll be given by the first Eq. (30}. At the end of Stage 5

we have

Stage SL(IH): PI/Y = -{1 + 3r) kv/Y = 4 - 12r b

le‘l a -(1 4+ 97 - 2:2)

Continuing in this tashion we obtain the solutions for the rest
of the prescribed program. The results are summarized in Table 1.
Ifr >0.0674 for an IH material, the yield force in bar 1 will
increase to the point that v = 0 during reloading while bar 1 is
still elastic.

The results for & PP material can be obtained from either of
the above S" solutions by setting r = 0, or can easily be found

directly. The results are summarized in Table 2.




Por all solutfons the external load V is found by substituting
the listed bar forces in the second Eq. (10). Figure 5 showa the
resulting losd-displacement curves for the three different materials.
Results for the rigid/plastic materials will, of course, be very

similar.

4. SHAKEDOWN

We consider firet an E/PP material which is subjected to a
prescribed loading program which continues indefinitely, usually
as a repeated cycle. If the loads ars always sufficiently small,
the structure will remsin everywhere elastic, and is of no concern
in the present context. At the other extreme, if the loads ever
exceed the yield-point load of the structure, there will be no
equilibrium solution. The structure will collapse catastrophically,
and the rest of the loading program will be meaningless. 1In the
present section we are concerned with loading programs between
these two extremes, i.s., the loading program {ncludes loads which
exceed the elastic limit but which nowhere exceed the yleld-point
load.

We illustrate various loading programs with regard to the
truss in Fig. 1. In every case we take all three bars to have the
same cross-sectional area and the same material properties.

Consider first s program in which ¥ = 0, always, and V
oscillates between 0 and 2.2Y. During the initial increase of Vv
&gs. (11), (12), and (16) apply but stage 2 ends with the limiting

value of V-

|
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Stage 2L: F =Py =0.6/2¥ F,=Y kv/¥Y=1.2/7 v=2.2¢ {32

1
When V is decreased .from 2.2Y, the changes in both bars will be
elastic. Therefure, it follows from {20a) and the second Eq. (10}

that

AF, = 0.5kAv  AF,=kAv V= (1 ¢ 1//Tkav (33

1 2

Setting &V = -2.2Y ‘0 reduce V to zero, laads to the values

Stage 3L: rl-rl-u.w‘}-z.z)v F,=12.277-3. 0¥

(30
kv/Y = 3.4/7 - 4.4

Since both forces are within the elastic range, this solution is
the valid one for Stage JL. Further, when V is again {ncreased

to 2.2Y, EBgun. (33) will hold for the entire reloading process,

and the solution at stage 4L will be exactly the same ag that at
Stage 2L as given by Bqas. (32). Clearly further cycles will simply
alternate between Eqga. (32) and (34) with both bars continuing

to behave eslastically.

The above behavior can be summarized as follows. There is a
limited amount of plastic flow at the beginning of the loading
process, but after this has taken place the rest of the cycle i1s
completely elastic. A process with this property is called a
“shakedown” proceass.

As an example of a process which does not shake down, suppose
that after the initial loading to 2.2Y the load V is alternated
between -2.2Y and +2.2Y. Stages 1! and 2 will be the same as
bafore, and the change in Stage 3 will etill be given by Egs. (33).

However this solution is valid only until AP, = -2Y, which leads to

L.
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Stage 3L: rl-(o.sﬁ'-nv Py=-y kv/Y=1.2/7-2 V=-(0.4+72)Y (35)

Purther unloading takes place with bar 2 plastic, hence AF, = 0.
Choosing AV to bring V to its final value of -2.2Y, using Eq. {20a)

for Arl,and the second (10) for V, we obtain

Stage 4L: rl=-o.3/!v Fy=-Y kv/Y = -0.6/F V= ~2.2¢ (36)

The reloading process is similar, consisting of Stage 5 with
all bars elastic and Stage 6 with bar 2 plastic in tension. The
results are summarized in Table Ja. We observe that the solution
for Stage 6L is exactly the same as the one at Stage 2L, 30 that
this cycle of 4 stages will be exactly repeated in each cycle of
vV from #2.2Y to -2.2Y and back to +2.2Y as given in Table la,

In particular, the value of the displacement will never exceed
1.697Y/k which is less than double the maximum elastic displacement.

At first glance it might appear that this loading program
was a mafe one for the truas mince bar 1 never yields and the
displacement is always bounded. However, from a materials point
of view, the process of plastic displacement is not a reversible
one. Although the gross displacement of bar 2 ie the same after
a éomplete cycle, the tensile plastic behavior in Stage 6
does not "undo® the compressive plastic elongation in Stage 4,
but rather superimposes a ton.li. plastic elongation on it. To
obtain some insight as to why this behavior is undesirable, we
introduce the concept of "plastic work®.

The differential internal work done on a bar is given quite
generally by W = F de. Por an E/PP bar at yield there is no

change in the bar force and hence no change in the elastic

elongation, so that all work done is plastic. Further, since the
force has its constant yleld value, and since the elongation change
is positive in tension and negative in compression, we can write

the increment of plastic wvork in the form
AW_ = Y |ae
b | e tan

In particular, since bar 2 is the only one to yield in the present

exanple, we may use the middle Eq. (2} to write

{138)

Y|av| when bar 2 plastic
AW =
P ] when bar 2 elastic

Equation {38) shows that plestic work is done during each even-
numbered stage and is always positive. The last column of Table 3a
shows the cumulative plastic work through Stage 6. Clearly a
further increment of 1.394 Yz/k must be added during each additional
half cycle. Since the capacity of any real material to absorb
plastic work is limited, the trues will become unserviceable after
a relatively small number of cycles. The solid curve tn Fig. 6
shows the accumulation of plastic work during the first few cycles.
A loading program in which this phenomen occurs is called “alternating
collapse®.

In Sec. 2 we concluded that it was reasonable to neglect
hardening at loads less than the yield-point load, at least for
a single loading. To what extent is that conclusion valid in
relation to shakedown? It turns out that the answer is quite
different depending upon the type of hardening. We consider

firet an E/KH material. As before, bar 1 is always elastic, so
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we will be dealing with only two different incremental solutions:

APl = kav/2 alwayas {39a)
AP, = kav av = xav()l + 1/V3) bar 2 elastic (39b)
8F, = k‘Av v = kavir + 1//1) bar 2 plastic {3%¢c)

buring the initial loading (39b) will apply with Pz = Y to
determine Stage 1L, then {39c) should be used with AV = (1.2 - 0.5/D)Y
for Stage 2L. Stage JL is determined from (39b) with Ar, = -2v,
and Stage 4L from {39c) with AV = (-2.4 + /1)Y. Similar reasoning
applies to 5tagesS and 6. The results are summarized in Table 3b.
Since conditions are exactly the same at Stages 6L and 2L, further
cycles will simply repeat the last four lines of Table 3b.

When a bar is plastic, the incremental work can be written
dw = P de = P & dt = Fh/K' dt = a(z?/2k) )

However, to find the plastic work differential we sust subtract the
elastic differential dWN = a(rz/n). It '0 and AP represent the
beginning value and increment, respectively, of P during a plastic

stage, we may write the plastic work incresent in the form

2 2
aW = 0.5{L/k" - L/K) [P, + APYE - P )
e o ° (1)
= (1 -xy(ar/k’) (P" + AF/2)
In particular, for bar 2 Eq. (41) becomes
Allp-(l - X)AVIF, + 0.54P) 142}

The last two columns of Table 3b show the increments and cumulative
values of the plastic work, sand the dashed curve in Fig. 6 shows
the cumulative plastic work over the first few cycles for r = ¢.1.

Comparing the results for the E/PP and E/KH models we see that

17

the former is a reasonable approximation to the latt party-
cular, both models predict that the plastic work wil
without bound as the cycles continue.

‘The E/IH material behaves quite differently. The increments
are still governed by Egs. (39), but the passive yield force comes
from (19h) rather than from (19i). The resulting solution 1s
exactly the same through Stage 3, but Stage 3L occurs when Pz iB
equal to the negative of its value at Stage 2L, rather than when
AP = -2Y. The net result is that the truss spends more of its
unlosding time in the elastic Stage 3 and less in the partially-
plastic Stage 4. The same thing happens during the reloading
phase. Therefore, as shown in Table 3c, the solution at Stage 6L
is different from that at Stage 2L, so that the next cycle of
unloading-reloading will be different. In particular, we note
that the value of r2 at the end aof each cycle has increased.
Since this value is the current yield stress of bar 2, a larger
proportion of each succeeding cycle is spent in a fully elastic
state.

Regsults for the first few cycles are shown in Table 3c and
by the dotted curve in Fig. 6. Although bar 2 is plastic during
part of every cycle, it is apparent that the proceli is con-
verging to an entirely elastic one, and that the total amount of
plastic work is finite.

Let us return to the E/PP material and consider a different
loading cycle. We begin in the same way by increasing Vv to 2.2y,
but we then superpose an alternating load at 45°. Therefore,

Stages 1 and 2 are the same as in the previous example, but




beginning with Stage ) the load increments are defined by
AH = ~AV = AX//Z, where X is cycled between 0 and 1.1Y¥.

Therefore, Egs. (1) can be written
REL - APy = AL AP) ¢ AF, + /IAF, = -8} 43

At the end of Stage 2 bar 2 is plaatic, but the upward component
of the diagonal load reduces Pz 80 that Stage 3 is fully elastic.
The increments of the three bar forces and two displacement com-
ponents are all proportional to A\ and are given in the first
column of Table 4. Although bars I and 3 are both in tension at
the start of Stage 3, Pl is increasing and r3 is decreasing
during the stage. Stage 3L is determined by bar 1 reaching itas

tensile yield force when % = (0.8 - 0.2/7)Y = §.517Y.

In Stage 4 AF, =0 and Egs. (7a) are valid for bars 2 and 3.

1
Together with (43) this leads to A!z = 0, also. The complete
solution isa shown in column 2 of Table 4. Stage ¢ terminates
when A eguals its final value of 1.1Y. The complete solution for
Stage 41 is given in Table 5.

We now reduce the diagonal load so that 41 i{s negative. This
causes a decrease in rl’ 80 that the truss is again fully elastic.
As shown in Table 4, a negative Al increases rz and bar 2 will
yield in tension when % = 0.583. The complete solution for the
resulting Stage SL is shown in Table 5. 1In stage 6 Arz =0
which leads to the same force increment values as in Stage 4
(see Table ¢). However, bars 1 and } are now elastic and the
corresponding Eqs. (7a) show that Au + AV = 0, whereas in Stage 4

AV = 0. Thus, the displacement increments are different in the
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two stages. Stage 6L is defined by » = 0, and the resulting
complete sclution is given in Table 5.

The bar forces are all exactly the same at Stage 6L as they
were at Stage 2L. Therefore, they will repeat the same sequence
of values during each additional cycle of load. However, the
vertical and horizontal displacements have each increased by
(0.3 + 0.2/2)Y/k = 0.583Y/k during the cycle. Clearly they will
increase by the same amount during each succeeding cycle. There-
fore, although at any given instant the truss has at least two
bars elastic and can support the given load, the deformations
grow indefinitely with time and the truss eventually becomes
unserviceable. fThis behavior has been termed *‘nci mental
collapse®. A history ~f the displacemente during the first few
cycles is shown in Fig. 7.

Physically, we can observe that if bars 1 and 2 were both
in plastic tension at the same time the truss would be a mechanism
capable of a rotation about the end of bar 3 with 4 = v. Of
course this does not occur, but in the course of a complete cycle
bars 1 and 2 are plastic at different times. The net effect at
the end of a complete cycle is a limited mechanism motion
Au = Av = 0.58) Y/k, as shown by the detailed analysis.

For this loading program the two stainhardening models are
the same. Stage Ju is again given by the appropriate line from
Table 3b or 3c. From then on the equilibrium equations are
given by (43). Combining the kinematic and constitutive eqg_ations

we obtain

—— e - P ek
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E/ AF, = K(8V +8u} /2 AF, = kav AF) = k(8v - 8u) /2 (44a)
/SHOF) 2k’ (A +8u)/2 &F, =kAv AF, =K’ (4v - 8u)/2 (44b)

Stage 3 is fully elastic and terminates when bar 1 reaches its
yield force, Y. The complete solution for this and subsequent
stages are given in Table 6. In Stage 4 we use (44b) for bar 1
and (44a) for bars 2 and 3, and terminate the stage when ) reaches
its maximum value, 1.1Y.

Decreasing ) in Stage 5 causes all bars to become elastic again.
However, the stage does not end until bar 2 reaches its current
yield stress, Yz'. This value is the maximum of previous values
of Pz, i.e., Yz' * 1.061 which was attained at Stage 2L.

Stage 6 continues with bar 2 plastic and ends when A is reduced
to 0. Since Stages SL and 2L do not have the same bar forces, if
we want more stages we must find them explicitly. The qualitative
description of each cycle 15 the same: as X is increased all bars
are elastic at the start but bar 1 becomes plastic before ) reaches
1.1¥; aa A is decreased all bars are first elastic but bar 2
becomes plastic before the cycle ends. However each time bar 1 or
bar 2 yields its yield force is increased so that during the next
cycle the truss will remain fully elastic until nearer the end of
the cycle. Table 6 gives the complete results through Stage 4L,
corresponding to three complete cycles.

Of particular interest are the total displacements added

during each cycle. Using the results of Table & it is easy to
ehow that the ratio of the increase in either u or v to its

increase in the previous cycle is the constant value n = 0.571636.
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Thus the net displacement can be written as a geometric serles

which converges to the final values

u = 1.508Y/k v o= 2,912Y/k (43)

Therefore, at least in this simple example, the introduction of
strainhardening leads to finite values of the total displacements

as compared with the infinite values predicted by the E/PP model.

5. REVERSE STRESSING UNDER MONOTONIC LOADING
Iin the previous sections we have seen various examples

where the force ratios between bars will change as one or mote
bars becomes plastic, even though the external load 1s uniformly
increasing. Here we present a simple example in which the rativs
not only change magnitude, but actually change sign. The truss
in Pig. Ba consists of three numbered vertical bars made of an
E/PP material and joined to a perfectly rigid horizontal bar.
The three vertical bers have equal areas A, lenyths L and moduli E,

but are assumed to have different yield stresses yiven by

Y, =Y Y, = 20Y Y

1 2 3 " 12y (4o)

A vertical load P is applied as ina.cated. It 18 increased

There

just to its yield-point value, and then decreased to zeru.
are no horizontal loads, and we assume zero horizontal motion.
static equations are obtained by considering vertical and

moment equilibrium of the horizontal bar (Fig. 8b):

- - - 41
F, + ?Z + F, 1 3 F L5} 0.5P (47)

1 3
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There are two degrees of kinematic freedom which we take to be
the elongation v of bar 2 and the difference z between the elon-
gations of Lars 3 and 2, Fig. Bc. Clearly z = LB where 6 is the
In terms of these

clockwise rotation of the horizontal bar.

variables the bar elongations are

e =v -z e, =V e]'v0:

The constitutive behavior is given by the rate form of Egs. (7a)
and (7c). Combining these with Eqs. (48) we obtain
E/: F) = kiv-12) LY kv - k(v +13)

/PP By o= tY, ré >0
where k = AE/L.

As P is first increased from 0 all three bars are elastic.
Equations (47) and (49a) in integrated form lead easily to the

sotution

Stage 1: Fy = P/12 Fy = 4r/12 r, = 79/12

k]

v = p/IKk z =~ P/4k

Although bar ) is the most highly stressed, bar 1 will be the
first to yield since its yield force is so much smaller. Thus

Stage 1 ends with the solution

Stage IL: F‘ =¥ F, = 4y P3 - 7Y

v = 4Y/% z = 3¥/k p = 12¢

In Stage 2, F) majintains the known value Y, so that Eqs. (47)
may be solved directly to obtain all bar forces. Bars 2 and 3

are elastic, so the last two Eqe. {(49a) are available to

(48)

(49a)

{49b)

{50}

(51)
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determine v and z. Further, since these bars have always been

elastic, we may use the integrated form directly. Thus

= 0.5P - 2Y F, = 0.5P+Y

Stage 2: Pl =Y F 3

2
(52)

kv = 0.5p -~ 2Y kz = 3Y

This stage will end when bar 3 reaches {ts yield force 12Y:

Stage 2L: P, =Y P, = 9Y F, = 12Y
1 2 3 (3]}

v = 9Y/k z = JY/k P = 22Y

If bars 1 and 3 both remain plastic, the truss will be at
its yield-point load. A formal solution of the equilibrium
equations and the middle Eq. (49a) regains the values in (53)
for the bar forces, load, and v, with 2z stil! undetermined.
However, with v = 0, the rate form of Egs. (48} shows that él
and 5) cannot both be positive, hence the inequalities in (49b)
cannot both be satiafied, The same result is physically obvious
from rig. 8c. If bar 2 remains rigid, a yield mechanism would
rotate the horfzontal bar about the end of bar 2 which would
result in a shortening of bar 1.

The above arguments show that in Stage 3 bar 3 will be
plastic, but bar 1 will return to an elastic state. Thus we
set '2 = 12Y, solve {47) for the remaining forces, solve the
first two (49a) for v and 2, and integrate using Eqs. (53) as

initial conditions:

Stage 3: Pl = 12Y - 0.5P Fz = 1.5P - 24Y FJ - 12Y

v = 1.5B/k & = 2b/k (54)

kv = 1.5P - 24Y ks = 2P - 41Y
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The force in bar 1 is now decreasing, and it will reach its

yield value in compression while bar 2 is etill elastic:

Stage JL: F = -Y P2 = 15Y P] = 12y P = 26Y

1
kv/Y = 15 kz/Y = 11 {

If the load is majintained at 26Y with bars 1 and 3 remaining

plastic, the solution consists of Bqs. {55a), kv/Y = 15, and z is
undetermined with any 2 > 0 satisfying both relevant inequalities
in (49b). Therefore Eqgs. {55) represent the beginning of the
yield-point solution.

Instead of maintaining P at 26Y, let us immediately reduce
it. In most problems a reversal of the only load will cause all
plastic bare to become elastic. However, if we superimpose the
elastic solution (50) with a negative load increment on Egs. (55),
the force in bar 1 will immediately exceed its compressive yield
strength. Therefore, even though bar 1 has just reached yield
under an increasing load, it will remain at yield when we decrease

the load. The resulting solution is easily found to be

Stage 4: P, = -Y - 0.5P - ¥

1 Pz - 0.5P +2Y 4

3

kv = 2Y ¢+ 0.5P kz = 11y

Clearly no further yielding takes piace as # is reduced to

zero. When the truss is fully unloaded it has a set of residual

torces and permanent displacements given by

Stage 4L: P=0 PI-PJ.-Y l’z'ZY kv/Y =2 kz/Y =11

(55a)

55b)

{56)

(57
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The behavior of this seemingly simple structure becomes even
more complex when a strainhardening material is considered. Under
an increasing load the elastic behavior and Stage IL will, of
course, be the same. In Stage 2 bar 1 will be in plastic tension,
and the stage will end when bar 3 reaches its yield rorce of 12Y.
Bar 1 will unload and bar 3 will be in rlastic tension in Stage 3.
Thus far the solution will be only slightly different from the
perfectly plastic truss because of the effects of strainhardening
when bars 1 or ) are plastic.

The termination of Stage 3 will depend upon the type of
hardening. For kinematic hardening bar 1 will yield in com-
pression when the change in Fl from its value at Stage 2L is -2Y
which occurs at a load P = 28.9Y. On the other hand, for an
isotropic hardening material bar | will yleld when its torce
reaches the negative of its previous meximum value at P = 3}.2,

FPigure 9 shows the relation between the load P and the

deflection
§ =v ~-3/2 (54)

of the point of load application. The unloading portion shows

unloading from Stage IL. Part of the difference between the
curves is caused by the fact that they show unloading from different
values of the load.

In the presence of stainhardening there is no maximum
Therefore,

allowable load. instead of reducing the load troum

Stage 1L, let us form Stage 4 by continuing tu increase 1t. Bar |

will be in plastic compression, bar )} in plastic tension, and
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bar 2 will be still elastic with increasing force. The stage will
end when F2 reaches itsmaximum value of 20Y. Table 7 shows the
regulting solutions for both types of hardening at the various
limit stages, assuming r = 0.1.

In Stage 5, bar 2 will be plastic. If all bars were plastic,
the bar force increments would be in the same proportion as in

Stage 1 when all bars were elastic. In particular, AF, would be

1
positive which would mean that it would no longer be in plastic
compregsion. Therefore, in Stage 5 bar 1 will again be elastic,
while bars 2 and 3 are in plastic tension. Stage 5L occurs when
bar 1 reaches its current tensile yield atrees. FPor the KH
material this will be when Arl = 2Y, whereas for an IH material

it is pot until Fl reaches the same magnitude tensile force it

had in compresaion at Stage 4L. As shown in Table ? aand Figure 10,
the load and displacement at Stage 5L are quite different for the
different types of hardening.

However, this difference is really qualitative but not
quantitative. To see this, let us continue to increase the load
to a valve of BDY. During this Stage 6 all bars are plastic in
tension. Table 7 shows that at the final load all bar forces and
displacements have only very small differences, and the two
curves are virtually indistinguishable in rig. 10,

Let us review the behavior of bar } of this simple
strain-hardening truss. As the single load P is monotonically
increased, bar 1| is first elastic, then yields in plastic tension,
then unloads and ylelds in plastic compression, then reloads, and

finally yields for a second time in plastic tension.
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To conclude this section we coneider one more loading program
in which P is increased until bar 2 just reaches yield and is than
decreased to zero. Stage 4L is the same as before, but a new
Stage 5* will result from the unloading., Since fully elastic
unloading would decrease rl which is already at compressive
yield, Stage 5° will find bar 1 plastic and bars 2 and } elastic.
But the original Stage S5 also had bar 1 in plastic compression.

In other words, once the truss is at Stage 4L, bar 1 will continue
to yield in plastic compression whether the load is increased or

decreased!

6. HNON-UNIQUENESS

We return to the truss of Fig. 1, with the following modi-
fication: the bars have unequal yileld forces with Yl =Yy - Y.
Y, = 3¥. We consider a load-controlled program with H = ¢ and
V increasing to the yield-point load. However, we do not wmake
any assumptions of symmetry. The bars are all E/PP,

For convenience we shall repeat the defining equations in a
torm specialized to the particular loading program. The equili-

brium equationas are

LIRS ey JIV (59a)

1

-r. =0 (59b)

¥ 3

1
It turns out that bar 2 is always elastic and bars 1 and 3} are
either elastic or in plastic tension. Therefore, we may combine

the kinematic and constitutive equations to obtain

e —_—
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Pz = kv (59¢)
EITHER Pl = (k/2) (v + u) OR Pl -y {59d)
EITHER P) = (k/2) v - u) OR F) -y (59%e)

together with inequality conditions which may be written

F,o< Y LI fol <v 1596

1
Equations (59) provide a total of five equations to determine
Fy» Py Fyo 0, and v.

Stage 1, of course, is elastic, so we use the first branch

in Eqs. (59d, e) to obtain the unique solution
u=0 2F) =20, =Py = kv s (2 - AV (60)

as in Sec. 2. However, with the stronger bar 2, bars 1 and 3

yield first, so that Stage 1L is

u=0 Pl=P; =Y Py, = kv = 2Y Ve (2+ /DY (61)

In Stage 2 bars 1 and 3 are both plastic s0 the second branch
18 used in (59d, e). However, this means that (59b) is satisfied

identically. We can still use (59a, c} to obtain the unigue values

P, ~Fy =Y Py = kv =V - /Y (62a)
but we cannot determine the value of the horizontal displacement v,

although [59f) does provide the bounds
ful < aw/x {62D)

In particular, Stage 2L at the yield-point load is

FyxFy=Y Fyekv=3Y v=(3+/Dy (63a)

ful < ¥/x (63b)
—
——
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Figure 11 shows the unique molution at Stage if, and several
solutjons for Stage Z.. Por example, Fig. 1lb shows the largest
allowable value of u, u = Y/k. In this solution bar 3 rotates as
a rigid body, bar 2 elongates elastically, and bar 1 elongates
plastically. Notice that any vaiue of u larger than Y/k would
require a shortening of ba: 3 which is not permissible when 1t
is yielding in tension. On the other hand any position of point
D between the limiting ones in Pigs. 11 a and b requires a
lengthening of both bars I and 3 which is consistent with their
both being at tensjle yield.

Mathematically, the uni. was

d by the fact
that two bars yielded simultaneously and reduced cne of the
eaquilibrium equations to an identity. 1In reality, of course,
infinitesimal differences between the two bars would make it
extremely unlikely that they would both yield at exactly the
same instant. To examine this facet of the problem, let us make a
perturbation of the problem by taking Yl = Y + X where X 18
positive but otherwise arbitrary. Stages 1 and 1L will be the
same as before, although only bar L will yield at Stage lL. In
Stage 2 we now use the first branch of (59e) along with the
second branch of {59d). The resulting unique solution consists

of (62a) tc ther with the value
u = AV/k

In particular, at Stage 2L the solution consists of Egs. (6la)

plus

= ¥Y/k

(64)

(65}




30

Piqure 11b shows the resulting conflguration. This solution i»
completely independent of X, provided only that X is positive.
In particular, X way be arbitrarily small so that there is no
practical difference between the two yield forcea.

However, it is clear that if we leave '3 = Y and set
¥, = Y + X, the solutfon at Stage 2L will consist of Egs. (61a)
plus

u o~ «Y/k (66)

as plctured in Fig. 11a. This molution, too, is valid for

arbitrarily small X. Therefore, although the non-unigque solution
of the original problem can be made unigue by an arbitrarily small
perturbation, two different perturbations give two very different
unique solutions.

Let us now consider the effect of strainhardening. In doing
80 we shall allow for different rates of hardening in bars 1 and 1}

by defining

K)' o= kry ky' = kry (67)

Then Eqs. (59d, e} will be replaced by

IP P, <Y THEN P, = k(u + v)/2 ELSE 7, = rlk(u + v)/2 {68a)

1 1

1F Py < Y THEN FS = k{v - u)/2 BLSE P’ - r,k(v -u)/2 (68b)

Stages 1 and 1L are the same as before, and the complete
solution for Stages 2 and 2L is eassily obtained. Unique values
are obtained for all variables, and if the strainhardening tends
to zero the bar forces and vertical displacement will tend to the
values in Eqs. {(62a) and (63a). We shall focus our attention on

the unique value of u at Stage 2L which is given by
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usi—i—,—:‘;-} (69)
If the strainhardening in the two bars is the same, LS EY
we obtain the symmetric solution u = 0 as pictured in Fig. llc.
On the other hand, if g 0, and only bar 3} hardens, we get

v = -y/k as in Eq. (66) and Fig. 1la. Likewise, if only bar 1}
hardens the solution is again Eq. (65), Fig. 1llb. Clearly
unegual non-zero hardening in the two bars can produce any value
between these two extremes; for example r

= 0.1, r, = 0.05 gives

1 )

the result u = Y/}k as shown in Fig. 114.

7. CONCLUSIONS

In the preceding sections we have used two very simple
trusses to illustrate several important concepts in plasticity.
The ideas presented are not new, of course, nor are most of the
applications. The truss in Fig. 1 has been used many times starting
at least as early as 1948 [1, 2, 3)* to illustrate plastic and
other inelastic behavior. It has also been used to {llustrate some
singular features in plastic design (4]. The truss in Sec. S
{riqg. 8} was firat introduced by Drucker [5], and much of the
present development was taken from that reference.

Countless texts on plasticity are available {6, 7, 8, 9, 10]
(to name just a few). The basic constitutive equations pre-
sented in Secs. 1 and 2 can be generalized to two and three

dimensions and to various structural problems. For the particuiar

* Numbers in aquare brackets refer to references collected at

the end of the paper.
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case of a simply-supported circular plate generalizations of the
four stress-strain curves shown in Fig. 2 have been applied {11]).
Figure 12, taken from Ref. [11]) shows the relation between the
pressure and the displacement of the plate center. The results are
certainly qualitatively similar to those for the three-bar truss
as shown in Pig. 3.

Shakedown was first introduced by Melan (12}. Many results
have been presented by Symonds and by Neal [13, 14, 10). Important
theoretical work has been done by Koiter [15, 16). Recently, an
entire book by Gokhfeld and Cherniavsky [(17) has besn devoted to
the subject.

The idea that plastic stress reversal can occur even under
a single monotonic loading has many important implications. For
example, the somewhat simpler theories known as "plastic-deformation®
theories which directly relate stress to strain rather than relating
their rates is obviously inappropriate wnen this phenomenon occurs.

FPigure 1) shows an eleven-bar truss which does not 100k par-
ticularly unusual. The top four bars all have the same cross-
section and are wmade of an E/KH material with r = 0.1. However

their yield forces are

Y, =Y

) = 12y Y, = 5Y (70)

'1 -Y .

3
The bottom bars are all substantially stiffer and have a yield
stress high enough to prevent yielding. As the load P is in-

creased, bar 1 first yields in tension, then bar 4 reaches its
yield force 3Y. Bar | sust now unload, and it then yields in

compression. Next, bar 2 yields in tension, and bar 1 again
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unloads, goes into tension, and eventually yields again in tension.
Table 8 shows the bar forces, load, and displacement of the point
of load spplication for the following specific values:

2

Bars 1-4: A= 100 mm £ = 80 GPa E' = B GPa

Bare 5-11: A = 1000 mm2 E = 240 GPa (n

Y = 10 wpPa

A similar stress reversal has been observed in elastic-plastic
torsion of some hollow bars (18, 19]1. Shaw {20]) has numerically
solved the torsion of & bar whose cross section is a hollow
rectangle with fillets. He has shown that plastic behavior starts
on the inner boundary at the fillet, and that the stress vector
there is in the direction of the torque. However, it was first
pointed out in [18) and later numerically verified in [19] that
at the limiting plastic torque the stress vector there must be in
the opposite direction from the torque. An unfortunate result
of this plastic stress reversal is that the Nadaji sandhill-soapfila

analogy {21} is no longer applicable.

The ph

of non-uni

was encountered, apparently
for the first time, in the development of a finite-elemant model
with discontinuous displacements for use in plane-strain plasticity
(22, 23). 8ince this was & primarily numerical development, it

H was not clear whether the non-uniqueness was inherent in the E/PP

model, or whether it was a peculiarity of the particular finite-

elament model. The analysis presented in Sec. 6 [24, 25] shows

that it is, indeed, a possibility which must be considered in any

problem using the E/PP model.
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Figures 14 and 15 {24] show some other simple examplea. The
elastic solution for the truss in Fig. 14 is symmetric. It ends
when the tw~ side bars reach yield. Further increase of load can
be associated with any non-negative change in the lengths of the
vertical bars. Figure 14 shows the two extreme positions where one
of the plastic bars does not change its length. Any intermediate
solution can be obtained by a rigid-body rotation f the upper
triangle about the center-point of the truas.

As the load on the frame in Pig. 15 is increased, hinges
wiil form firse at C, then at B, and then simultanecusly at points
A and D, but the frame will not collapse until the final hinges
form at E. The solution is unique during the elastic and first
two partly-plagtic stages, but once the hinges forw at A and D,
the rotations at these new hinges are controlled only by inequa-
lities, both heing required to exhibit tensile strain at the top
of the hinge. Figure 1S shows the two extreme positions. Any
internediate molution obtained by a rigid-body vertical motion
ot the central part of the frame is aleo possible.

The possibility of part of the solution baing non-unique
has important implications in finite-element programs. Even if
the engineer is concernnd only with forces which are unigue, a
non-unique soluticn corresponds to a singular set of equations,
and hence to a sinqula; stiffness matrix. Thus it may be
impossible to continue the solution past the point where the
non-uniqueneas occurs, eve: though the load is still balow the
yield-point load. MNumerical rcund-off error may mask the

s

singularity of the stiffness matrix, but the resuiting problem

would be highly ill-conditioned and might lead to misleading

results. This problem is certainly worthy of further investigation.
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Stage kv/Y rl/v FZ/Y

)1 1 1/2 1

2L 2 1 1+

L 8 1+ 3r 1 +7r

4L 6 - l4r -4r -{1 + 7r)

SL 4 - 12r -{1 + 3r) -{1 ¢+ 9r - 2:2)
oL -6 -(1 + 81 - 65 -1+ 191 - 1rd
7 -4 + 36r - 2002 ir - er? 1+ 19r - 14r?
oL o 2 -8+ “2 1+ 23 - sa? o zlrJ

Table 1

Three-bar truss with isotropic hardening

—
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Stage kv/Y Pl/Y r2/¥
iL 1 172 1

2L 2 1 1

3L L] 1 1

4L 6 ) -1

SL 4 -1 -1

6L -6 -1 -1

7 -4 [ 1

8L -2 1 1

L [ 1 1

Table 2

Three~-ber parfectly-plastic truss
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© “a
" 2
cycle Stage vy kv/¥ T v, /Y “p,‘/yl mpk/vz Cycle Stage wy kv/Y Fy/¥ mp/u
0 i 1.707 1.000 1.000 0 0 o 1 1707 1.000 1.000 0
2 2.200 1.697 1.000 0.697 0.697 L 2.200 1.611 1.061 0.566
1 3L -1.214 | -0.303 | -1.000 o 0.697 1 i€ -1.423 | -0.511 | -1.061 0.566
“w -2.200 | -1.697 | -1.000 | 1.394 | 2.001 © <2.200 | -1.474 | -1.157 | 1.528
st 1.214 0.303 1.000 0 2.091 s 1.752 0.840 1.157 1.528
oL 2.200 1.697 1.000 1396 3.485 1 2.200 1.396 1.213 212t
L—
2 7L -1.941 -1.030 -1.213 2.121
o -2.200 | -1.351 [ -1.245 2.475
Table la L 2.051 1.139 1.245 2.475
Alternating Load: E/PP 100 2.200 1.324 1263 | 2680
3 2L -2.200 | -1.309 [ -1.274 2.806
1 2.200 1.301 1.280 2.877
. 161 -2.200 | -1.296 | -1.284 2.918
2 2
cycle | Stage v kv/¥ LEVARN L MUA R 18 2.200 1.293 1.286 2.941
| e
° ™ 1.707 1.000 1.000 o o 5 0L -2.200 | -1.201 | -1.207 2.955
2w 2.200 1.611 1.061 0.566 0.566 221 2.200 | ‘1.290 1.288 2.963
-
1 3 1.4 | -0.389 | -0.939 o 0.566 ‘ 6 241 -2.200 | -1.289 { -1.208 2.967
“w -2.200 | -1.611 | ~1.061 1.099 1.666 | 261 2.200 1.299 1.208 2.970
s 1.214 0.309 0.939 ° 1.666 |
i
o 2.200 1.611 1.061 1.099 2.765
Table ic
table b Alternating Load: E/IM
Alternating Load: E/KH
, .
—
}
amg— 4
. J
- —_
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£85°0 €850 0 0 0 ° 1-19 suo
08z°z €85°0 6v5°0 0001 69870 0 19
169°1 9TT°1 99z-0 000°7 6v8°0 £85°0 15
£89°1 £89°1 oot-0- | s8co 0001 oo1°1 1
tev' 1 L1870 €8y°0 98270 000°1 L1570 1€ 1
169°1 0 6%8°0 000°1 68°0 o 1
000°1 ° 005°0 000°1 0050 - k) °
x/ax A/my x€a &t wh Y sbwag | eT2kD
o
N
-
E O
-9 -
g
it
-
v 3
~2 2
P
- @ o (-] -y o~ -3 “
33 . . 3
[ - -
- -y
. :
3 %
L L
- L =
TR <3
<
ag ([~ Qg LYy v 8
- ~ -
por ] 1 ] - ] >~
< ¢ - -y ' -~
T
- < - < -
/V /Y /y W W
\ 'Y o e < <
< < < - -~

o




J {
{Cycle Stage MY R F /Y Fy/Y Ku/Y xv/Y
0 1 - 0.500 1.000 0.500 0 1.000
2L 0 0.805 1.061 0.804 0 1.611
1 3 0.470 1.000 0.786 0.335 0.665 1.335
aw 1.100 1.072 0.684 | -0.483 2.202 1.234
5L 0.457 0.805 1.061 0.159 1.292 1.611
6L 0 0.765 1.118 0.765 0.646 2.177
2 7 0.740 1.072 0.684 0.025 1.652 1.743
8L 1.100 1.113 0.626 | -0.443 2,511 1.685%
9L 0.261 0.765 1.118 0.396 1.385 2am .
0L ) 0.742 1.1s0 0.742 1.015 2.500 -
3 1L 0.894 1.113 0.626 | -0.152 2.280 1.97%
12 1.100 1.136 0.593 | -0.419 2.782 1.943
13L 0.149 0.742 1.150 0.531 1.437 2.500
4 0 0.729 1.169 0.729 1.226 2.685
Table 6
Diagonal Load: E/SH
Stage pe 2T 3 4L SL 6L sLe
Bar States® - - TEE eeT [~ 3 ETT TTT CEE
Hardening K 1 X 1 X 1 X 1 X 1
Fl/‘l 1 1.3 =-0.7 -1.3 ~1.% =-1.7 0.5 1.7 2.6 2.7 -2.7 -2.8
PZ/Y 4 8.1 15.8 18.2 20.0 20.0 26.2 30.3 3.8 3.6 5.3 5.6
TJ/T 7 12,0 1.8 14.3 15.4 15.0 27.6 35.3 42.6 42.7 -2.7 ~2.8
xv/Y 4 8.1 18.8 18.1 20.0 20.0 103,3 123.3 167.7 165.% 5.3 5.6
k2 /Y 3 3.9 12.? 16.7 26.2 22.0 9.9 122.0 150.5 153.7 22.9 18,7
?/Y 12 21.4 28.9 n.2 339 3.3 54.3 67.3 2.0 80,0 © ]
ks/Y 5.5 i 12.6 22.7 26.6 34.1 3.0 125.1 184.2 242.9 242.4 16.7 14.9
Table 7

* E = Elastic, T = Plastic tension, C = Plastic Compression

Three-bar truss of Figure 8

}12
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Stage <4J 1L 2L 3L 4L SL

Statve all & ir 4T 4T,1C 4T,27

L ! L LS LS L LSS L
Fl(kN) 1.00 1.09 -0.91 -1.17 0.83

Fz - 1.96 2.46 10.59 12.00 16.52

F] - 0.92 1.23 7.73 8.82 1r.07

F‘ " 4.31 5.00 B.19 8.96 18.15

F5 - -1.00 -1.09 ¢.91 1.17 -0.83

Fg - -4.31 -5.00 -8.19 -8.96 -18.1%

L " 1.41 1.54 -1.29 -1.66 1.17

Fs - -1.41 -1.54 1.29 1.66 -1.17

Fg - 4.30 5.23 17.03 19.16 28.76

?10 6.09 7.07 11.59 12.67 25.67

\
Fll - 2.00 2.17 -1.83 -2 1.66
A 4
P (kN) 0.73 0.87 2.02 2.25 3.85% \/
y V

v (mm) 0.06 0.12 -1.62 -2.18 2.93

{v (mm) 0.96 1.16 7.06 8.34 25.89

Fig. 1 Three-bar truss.
Table 8

Solution for truss of Pig. 13
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Fig. 8 Truss with three vertical bars.

{#) Loaded truss
(b) Statics
{c) Kinematics

(aA)

(b)

(c)
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——

J
O

P/Y

56

—— E/KH
----- E/IH

Fig. 10 Losd-deflection curves for hardening truss.

-~
-

k87Y

~-

J—

O

O

el

undeformed truss
unigue solution at 1L
----- possible solutions at 2L

Fig. 11 wNon-unique truss configurations.
(a) minimum horizontal displacement
{b} wmaximum horizontal displacement
{c) symmetric solution
. {d} generic solution
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Fig. 12 Load-deformation curves for circular Plate.
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